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Abstract

We investigate the structure of asymptotic crack tip ®elds associated with the recently developed theory of
mechanism-based strain gradient (MSG) plasticity. The MSG plasticity theory directly connects micron scale
plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening
model to strain gradient plasticity. We show that the crack tip ®eld in MSG plasticity does not have a separable

form of solution. In contrast, all previously known asymptotic ®elds around stationary crack tips have separable
form of solutions such as the classical K ®eld, HRR ®eld, crack tip ®eld in the couple stress theory of strain
gradient plasticity, and the crack tip ®eld in the Fleck±Hutchinson phenomenological theory of strain gradient

plasticity. The physical signi®cance of this lack of separable solution of the crack tip ®eld in MSG plasticity is that
stresses at a distance on the order of dislocation spacing from a crack tip can no longer be characterized by a single
parameter as in classical J-controlled crack tip ®elds. This di�culty can be overcome by combining MSG plasticity

theory with a cohesive model of fracture. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Crack tip ®eld in classical plasticity

The pioneering work of HRR ®eld (Hutchinson, 1968; Rice and Rosengren, 1968) and J-integral
(Rice, 1968) has laid the foundation of nonlinear fracture mechanics. For an elastic-power law
hardening solid, the HRR ®eld gives the stresses near a mode I crack tip as
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sij �
�
J

r

�1=�n�1�
~sij�y, n�, �1�

where n is the plastic work hardening exponent, �r, y� are polar coordinates centered at the crack tip,
~sij�y, n� are universal functions of polar angle y (and n ), and J is the path-independent J-integral (Rice,
1968). It is observed that the J-integral is the only parameter that depends on external loading and
specimen geometry, therefore, it governs the amplitude of stress ®eld near the crack tip. Moreover, J has
been shown to be the crack tip energy release rate. Accordingly, the crack tip ®eld is called the J-
controlled ®eld, and the fracture criterion becomes naturally the attainment of a critical value of J, i.e.,

J � JIC, �2�
where JIC is the critical value of J for crack propagation and is related to fracture toughness KIC by
JIC � K 2

IC=E (E is the Young's modulus).
The establishment of Eqs. (1) and (2) forms the foundation of nonlinear fracture mechanics. The

mechanics and material aspects of nonlinear fracture mechanics can be summarized as:

1. the calculation of J for various specimen and loading, and the determination of the dominance zone
of crack tip ®eld (in order to ensure the J-controlled crack tip ®eld exists); and

2. the measurement of JIC for various materials.

Signi®cant e�ort has been made on these two separated aspects, and nonlinear fracture mechanics based
on classical plasticity theories has been successfully applied to macroscopic fracture problems (e.g.,
Kannien and Popelar, 1985).

1.2. Strain gradient plasticity

Although attempts have been made to link macroscopic cracking to atomistic fracture, they are
frustrated by the inability of classical plasticity theories to model stress±strain behavior adequately at
the small scales involved in crack tip deformation. For example, Elssner et al. (1994) have measured
both the macroscopic fracture toughness and atomic work of separation of an interface between a single
crystal of niobium and a sapphire single crystal. The interface between the two materials remains
atomistically sharp, i.e., the crack tip is not blunted even though niobium has a large number of
dislocations. The stress level needed to produce atomic decohesion of a lattice or a strong interface is
typically on the order of 0.03 times of Young's modulus, or 10 times the tensile yield stress. However, as
Hutchinson (1997) has pointed out, the maximum stress level that can be achieved near a crack tip is
not larger than 4±5 times the tensile yield stress of metals, according to models based on classical
plasticity theories. This clearly falls short triggering the atomic decohesion observed in Elssner et al.'s
(1994) experiments.

Besides the inability to model stress±strain behavior adequately near a crack tip, classical plasticity
theories, which possess no internal constitutive length parameters, also fail to predict the strong size
e�ects ductile materials display in micro-indentation or nano-indentation hardness tests (e.g., Nix, 1989,
1997; de Guzman et al., 1993; Stelmashenko et al., 1993; Atkinson, 1995; Ma and Clarke, 1995; Poole et
al., 1996; McElhaney et al., 1998); in micro-torsion of thin wires (Fleck et al., 1994); and in micro-
bending of thin beams (Stolken and Evans, 1998). Frustrated by the inability of classical plasticity
theories to model stress±strain behavior adequately at the small scale, Fleck and Hutchinson (1993,
1997) and Fleck et al. (1994) have developed a phenomenological theory of strain gradient plasticity
intended for application to materials and structures whose dimension controlling plastic deformation
ranges roughly from 0.1 to 10 mm. The theory is motivated by the dislocation analysis that the gradients
of plastic shear are directly related to geometrically necessary dislocations in a material (Nye, 1953;
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Cottrell, 1964; Ashby, 1970). The theory is a generalization of classical plasticity theories by
incorporating strain gradients in the constitutive relation. At a relative large characteristic length scale
(e.g., over 100 mm) associated with plastic deformation, plastic work hardening results mainly from the
storage of statistically stored dislocations (Ashby, 1970) such that the theory degenerates to classical
plasticity. As the characteristic length becomes small, however, geometrically necessary dislocations
come into play and the material is further work hardened, in addition to that from statistically stored
dislocations. This is consistent with the increase of strength at the micron scale in materials, as observed
in aforementioned micro-indentation, micro-torsion and micro-bending experiments.

Some internal length parameters have been introduced in strain gradient plasticity in order to balance
the dimensions of strains and strain gradients in the constitutive relation. Fleck and Hutchinson (1993)
and Fleck et al. (1994) have introduced an internal constitutive length parameter to scale the rotation
gradients in the couple stress theory of strain gradient plasticity. This length parameter is approximately
4 mm for copper from (Fleck et al., 1994) micro-torsion experiments, and 6 mm for nickel from Stolken
and Evans' (1998) micro-bending experiments. However, the couple stress theory of strain gradient
plasticity (Fleck and Hutchinson, 1993; Fleck et al., 1994) predicts only 10±20% increase in hardness
(Shu and Fleck, 1998), which clearly falls short of agreement with the signi®cant increase of 200±300%
observed in micro-indentation or nano-indentation tests (e.g., Nix, 1989, 1997; de Guzman et al., 1993;
Stelmashenko et al., 1993; Atkinson, 1995; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al.,
1998). For this reason, Fleck and Hutchinson (1997) have extended the theory of strain gradient
plasticity to include both rotation gradients and stretch gradients of deformation in the constitutive
model. Accordingly, two additional internal material lengths have been introduced. By ®tting
indentation data, Begley and Hutchinson (1998) have determined that the new material length scaling
the stretch gradients ranges from 0.22 to 0.6 mm.

There are also other alternative frameworks of strain gradient plasticity. Dai and Parks (1998) and
Acharya and Bassani (1999) have considered possible formulations of strain gradient plasticity which
retain the essential structure of classical plasticity and obey the Clausius±Duhem thermodynamic
restrictions. They have concluded that the only possible formulation is a ¯ow theory with strain
gradients represented as internal variables which act to increase the current tangent modulus of plastic
work hardening. However, there has not been a systematic way of constructing the tangent modulus so
as to valid the framework.

The aforementioned strain gradient plasticity theories (Fleck and Hutchinson, 1993, 1997; Fleck et al.,
1994; Dai and Parks, 1998; Acharya and Bassani, 1999) are motivated by dislocation theories. However,
dislocation theories are not actually used to construct the theory of strain gradient plasticity. Instead,
these strain gradient plasticity theories are developed primarily based on the macroscopically measured
uniaxial stress±strain behavior, with one or several constitutive length parameter(s) to be determined.
Micromechanical experiments such as micro-indentation, micro-torsion and micro-bending are used to
®t these internal constitutive material lengths. In order to directly connect strain gradient plasticity to
dislocation theories, Gao et al. (1999) and Huang et al. (1999c) have developed a theory of mechanism-
based strain gradient (MSG) plasticity based on a multiscale, hierarchical framework. Taylor's
dislocation model for plastic work hardening has been used as the building block for MSG plasticity.
The microscale density of geometrically necessary dislocations has been related to the macroscale
e�ective strain gradient through the Burger's vector of the material. This hierarchical structure provides
a systematic approach for constructing the constitutive law of strain gradient plasticity by averaging
Taylor's dislocation model over a representative cell. Although the new theory ®ts nicely within the
mathematical framework of the phenomenological theory by Fleck and Hutchinson (1997), the new
theory di�ers from all existing phenomenological theories in its mechanism-based guiding principles. As
a result, the internal constitutive lengths in strain gradient plasticity have been determined as �m=sref� 2b,
rather than treated as ®tting parameters, where m is the shear modulus, b is the Burger's vector, and sref
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is a reference stress (e.g., yield stress) in uniaxial tension. For typical ductile materials, these internal
constitutive lengths are indeed of the order of microns.

It should be pointed out that, even though other dislocation models can also be used as the building
block to construct strain gradient plasticity, we use Taylor's model because it is simple and robust.
Moreover, as seen from Fig. 1, Nix and Gao (1998) have shown that the micro-indentation hardness
predicted by strain gradient plasticity with Taylor's model agrees remarkably well with the micro-
indentation experiments for various single crystal and polycrystal metals.

1.3. Fracture in strain gradient plasticity

Classical plasticity falls short to give the large stresses needed for cleavage cracks in ductile materials
as in (Elssner et al.'s, 1994) experiments. Strain gradient plasticity theories, however, may provide such a
link between macroscopic cracking and atomistic fracture processes. Due to large strain gradients near a
crack tip, stresses may be signi®cantly larger than those in classical plasticity. Huang et al. (1995, 1997a,
1997b, 1999a), Xia and Hutchinson (1996), Wei and Hutchinson (1997) and Chen et al. (1998, 1999)
have investigated the asymptotic ®eld near a crack tip as well as the full-®eld solution. It is established
that, for the couple stress theory of strain gradient plasticity (Fleck and Hutchinson, 1993, Fleck et al.,
1994), the stress level near a crack tip is not signi®cantly increased as compared to that in classical
plasticity (Huang et al., 1995, 1997a, 1997b, 1999a; Xia and Hutchinson, 1996; Chen et al., 1998). This
is because the e�ect of stretch gradients, which is important near a crack tip, has not been accounted
for. In order to incorporate this e�ect, Chen et al. (1999) have used Fleck and Hutchinson's (Fleck and
Hutchinson, 1997) phenomenological strain gradient plasticity theory that incorporates both the rotation
and stretch gradients of deformation. Indeed, stretch gradients can elevate the stress level near a crack
tip, as also observed in steady-state crack propagation (Wei and Hutchinson, 1997). However, Chen et
al. (1999) have shown that the asymptotic crack tip ®eld in (Fleck and Hutchinson's, 1997)
phenomenological strain gradient plasticity gives an incorrect, compressive stress tractions ahead of a
mode I crack tip. This is physically unacceptable since these compressive stress tractions are clearly
against our physical intuition, and are opposite to those in classical K ®eld, HRR ®eld, and the
asymptotic crack tip ®eld in the couple stress theory of strain gradient plasticity (Huang et al., 1995,
1997a, 1997b; Xia and Hutchinson, 1996). In order to solve this puzzle, Chen et al. (1999) have used the
®nite element method to obtain the full-®eld solution. They have established that this zone of

Fig. 1. Comparison of the experimentally measured depth dependence of the hardness of (111) single crystal copper with a strain

gradient plasticity law based on the Taylor model (Nix and Gao, 1998).
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compressive stress tractions is extremely small (less than 0.1 mm) and falls outside the intended range of
applications (0.1±10 mm) for strain gradient plasticity. Therefore, the crack tip ®eld in phenomenological
strain gradient plasticity (Fleck and Hutchinson, 1997) has no domain of physical validity, i.e., the
dominance zone of the asymptotic crack tip ®eld vanishes. Accordingly, even though the path-
independent J-integral exists in phenomenological strain gradient plasticity (Huang et al., 1995; Xia and
Hutchinson, 1996), there is not a physically valid J-controlled crack tip ®eld that has a universal form
similar to that in Eq. (1).

In this paper, we investigate the crack tip ®eld in MSG plasticity. The theory of MSG plasticity is
summarized in Section 2. It is established in Section 3 that the crack tip ®eld in MSG plasticity does not
have a universal, separable form (with respect to r and y� as in Eq. (1) for classical plasticity. Its
implication on fracture in MSG plasticity is further discussed in Section 4.

2. Mechanism-based strain gradient (MSG) plasticity

The deformation theory of MSG plasticity (Gao et al., 1999; Huang et al., 1999c) is summarized in
this section. It has incorporated the modi®cations recently proposed by Huang et al. (1999b) based on
polycrystal plasticity.

2.1. Generalized stresses and strains

In a Cartesian reference frame xi, the strain tensor Eij and strain gradient tensor Zijk are related to the
displacement ui by

Eij � 1

2
�ui, j � uj, i � �3�

and

Zijk � uk, ij, �4�

which have the symmetry Eij � Eji and Zijk � Zjik: The elastic deformation is neglected in the crack tip
®eld. Therefore, the incompressibility gives

Eii � 0, Zkii � 0: �5�
The work increment per unit volume of an incompressible solid due to a variation of displacement dui is

dw � s 0ijdEij � t 0ijkdZijk, �6�

where the symmetric deviatoric Cauchy stress s 0ij is the work conjugate of the variation of strain dEij,
and s 0ii � 0; the symmetric deviatoric higher-order stress t 0ijk is the work conjugate of the variation of
strain gradient dZijk, and t 0kii � 0:

2.2. Equilibrium equations and boundary conditions

The equilibrium equations for an incompressible solid can be written as

s 0ik, i ÿ t 0ijk, ij �H,k � fk � 0, �7�

where fk is the body force and H is the combined measure of the hydrostatic stress and hydrostatic
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higher-order stress and is given by

H � 1

3
skk ÿ 1

2
tjkk, j: �8�

The higher-order stress tractions r̂k tangential to the surface of the body are

r̂k � ninjt 0ijk ÿ nkninjnpt 0ijp: �9�

The stress tractions on the surface of the body are

t̂k � Hnk � ni
ÿ
s 0ik ÿ t 0ijk,j

��Dk

�
ninjnpt 0ijp

�
ÿDj

ÿ
nit 0ijk

�� �ninjt 0ijk ÿ nkninjnpt 0ijp
�ÿ
Dqnq

�
, �10�

where ni is the unit normal to the surface and Dj is the surface-gradient operator given by

Dj �
ÿ
djk ÿ njnk

� @
@xk

: �11�

On the surface of the body, the gradient @=@xj can be resolved into the above surface gradient Dj and a
normal gradient njD, i.e.,

@

@xj
� Dj � njD, �12�

where

D � nk
@

@xk
: �13�

2.3. Constitutive equations

The uniaxial stress±strain relation can be written as

s � sreff�E�, �14�
where sref is a reference stress in uniaxial tension and f is a function of strain. For most ductile
materials, the function f can be written as a power law relation

f�E� � EN, �15�
where N is the plastic work hardening exponent �0RN < 1). The ¯ow stress, after incorporating the
strain gradient e�ects, is obtained from Taylor's dislocation model as

s � sref

���������������������
f 2�E� � lZ

p
, �16�

where E and Z are the e�ective strain and e�ective strain gradient, respectively,

E �
������������
2

3
EijEij

r
, Z � 1

2

�������������
ZijkZijk

p
: �17�

The term lZ represents the contribution from geometrically necessary dislocations, while the other term
f 2�E� represents the counterpart from statistically stored dislocations (Nix and Gao, 1998). The
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characteristic material length l for strain gradient plasticity in Eq. (16) is given in terms of shear
modulus m and Burger's vector b by

l �M2a2

�
m
sref

�2

b, �18�

where a is an empirical material constant in Taylor's dislocation model for plastic work hardening of
ductile materials, and is of the order of 1 (e.g., Nix and Gibeling, 1985); M is the ratio of tensile ¯ow
stress to shear ¯ow stress, and M = 3.06 for polycrystals (Taylor, 1938; Kocks, 1970). Nix and Gao
(1998) have used M � ���

3
p

based on the von Mises rule for isotropic solids. For ductile materials, the
intrinsic material length l at which strain gradient e�ects are important is indeed of the order of
microns.

The constitutive equations for MSG plasticity are

s 0ij �
2Eij
3E

s, �19�

t 0ijk � l 2E

�
s
E
ÿ
Lijk ÿPijk

�� s2
reff�E�f 0�E�

s
Pijk

�
, �20�

where the ¯ow stress s is given in terms of the e�ective strain E and e�ective strain gradient Z in Eq.
(16), and Lijk and Pijk are given by

Lijk � 1

72

�
2Zijk � Zkij � Zkji ÿ

1

4

ÿ
dikZppj � djkZppi

��
, �21�

Pijk � 1

54

Emn

E2

�
EikZjmn � EjkZimn ÿ

1

4

ÿ
dikEjp � djkEip

�
Zpmn

�
: �22�

The length lE in Eq. (20) is the mesoscale cell size, which will be discussed in detail in Section 4. It is of
the order of average dislocation spacing at plastic yielding, Lyield, i.e.,

lE � bLyield � b
m
sY

b, �23�

where Lyield � mb=sY is the mean spacing between statistically stored dislocations at plastic yielding, sY

is the yield stress in uniaxial tension, and b is a constant coe�cient of the order of 10 (Huang et al.,
1999b).

3. Crack tip ®eld in MSG plasticity

Follow the HRR ®eld (Hutchinson, 1968; Rice and Rosengren, 1968), we search for the asymptotic
crack tip ®eld that has a separable dependence on r and y as in Eq. (1). We begin with the mode III
crack tip ®eld.

3.1. Mode III crack tip ®eld in MSG plasticity

An in®nite medium with a semi-in®nite crack is subjected to anti-plane shear. The Cartesian reference
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frame is set such that the crack coincides with the negative x1 axis, and the anti-plane shear is parallel
to the x3 axis. The only non-vanishing displacement is the out-of-plane displacement u3 � w�x1, x2�:
The polar coordinates �r, y� are used in the near-tip asymptotic analysis. The displacement near the
mode III crack tip is assumed to have a separable form, i.e.,

w � rl ~w�y�, �24�
where the power l and angular function ~w�y� are to be determined. In order to ensure that the
displacement is bounded in the singular crack tip ®eld, the power l is limited in the range 0 < l < 2:
(Neither strains nor strain gradients would be singular at the crack tip if l is larger than 2.) The non-
vanishing strains and strain gradients in polar coordinates are

Er3 � E3r � l
2
rlÿ1 ~w, Ey3 � E3y � 1

2
rlÿ1 ~w 0, �25�

Zrr3 � l�lÿ 1�rlÿ2 ~w, Zry3 � Zyr3 � �lÿ 1�rlÿ2 ~w 0, Zyy3 � rlÿ2�l ~w� ~w 00 �: �26�
The e�ective strain E and e�ective strain gradient Z are given by

E � 1���
3
p rlÿ1

�������������������������
l2 ~w2 � ~w 0 2

p
, Z � 1

2
rlÿ2

�����������������������������������������������������������������������������������������
l2�lÿ 1�2 ~w2 � 2�lÿ 1�2 ~w 0 2 � �l ~w� ~w 00 �2

q
: �27�

The ¯ow stress s, as given in Eq. (16), is composed of the uniaxial ¯ow stress term f �E� and the strain
gradient term lZ: From the strain and strain gradient in Eq. (27), it can be shown that the strain
gradient term lZ is more singular than f 2�E� in Eq. (16), and therefore, dominates the ¯ow stress. The
physical interpretation is that the density of geometrically necessary dislocation near a crack tip is much
larger than that of statistically stored dislocations. Therefore, the dominant term in the ¯ow stress s is
given by

s �
���
3
p

am
�����
bZ

p
: �28�

It is observed that the above ¯ow stress near a crack tip in MSG plasticity is independent of the
uniaxial stress±strain behavior, f �E�, and therefore, is independent of the plastic work hardening
exponent N. This is the direct result of the ¯ow stress (16) in MSG plasticity, and it does not hold for
the HRR ®eld in classical plasticity, nor for the crack tip ®eld in phenomenological strain gradient
plasticity.

The deviatoric stresses and deviatoric higher-order stresses can be obtained from the constitutive
equations (19) and (20). The non-vanishing stresses are

s 0r3 � s 03r �
2Er3
3E

s � r�l=2�ÿ1 ~s 0r3�y�, s 0y3 � s 03y �
2Ey3
3E

s � r�l=2�ÿ1 ~s 0y3�y�, �29�

where ~s 0r3�y� and ~s 0y3�y� are angular functions for stresses. The higher-order stresses, as seen in Eq. (20),
should depend on both the uniaxial stress±strain curve f �E� and the strain gradient Z through the ¯ow
stress s: However, terms associated with f �E� are less singular than those associated with the ¯ow stress
s: If only the dominating singular terms are kept in the asymptotic ®eld around a crack tip, the non-
vanishing singular higher-order stresses are

t 0ry3 � t 0yr3 �
l 2E
54

s
E

�
ÿ Er3Ey3

E2
�Zrr3 � Zyy3� �

3

4
Zry3

�
� r�l=2�ÿ2 ~t 0ry3�y�,
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t 0yy3 �
l 2E
54

s
E

��
3

2
ÿ 2

E2y3
E2

�
Zyy3 ÿ 2

Er3Ey3
E2

Zry3

�
� r�l=2�ÿ2 ~t 0yy3�y�,

t 03rr � t 0r3r �
l 2E
54

s
E

"�
9

16
ÿ 3E2r3

4E2

�
Zrr3 ÿ

�
3

16
ÿ E2y3

4E2

�
Zyy3 ÿ

Er3Ey3
2E2

Zry3

#
� r�l=2�ÿ2 ~t 03rr�y�,

t 03yr � t 0y3r �
l 2E
54

s
E

�
ÿ Er3Ey3

E2
Zyy3 �

�
3

4
ÿ E2r3

E2

�
Zry3

�
� r�l=2�ÿ2 ~t 03yr�y�,

t 03yy � t 0y3y �
l 2E
54

s
E

"
ÿ
�

3

16
ÿ E2r3

4E2

�
Zrr3 �

�
9

16
ÿ 3E2y3

4E2

�
Zyy3 ÿ

Er3Ey3
2E2

Zry3

#
� r�l=2�ÿ2 ~t 03yy�y�,

t 0333 � ÿ
l 2E
108

s
E

"�
3

4
ÿ E2r3

E2

�
Zrr3 �

�
3

4
ÿ E2y3

E2

�
Zyy3 ÿ 2

Er3Ey3
E2

Zry3

#
� r�l=2�ÿ2 ~t 0333�y�, �30�

where lE is the mesoscale cell size in Eq. (23).
The hydrostatic stress H vanishes in an anti-plane shear problem. The substitution of stresses and

higher-order stresses into the equilibrium equation (7) gives the governing equation for the angular
distribution of displacement, ~w�y�,�

ÿ 3

16

A 0 2

A2
� 1

4

A 00

A
ÿ 3

4

A 0

A

B 0

B
� 15

4

B 0 2

B 2
ÿ 3

2

B 00

B
� 2ÿ l

2

�
l ~wC� 2� 3l

8

�
A 0

A
ÿ 6

B 0

B

�
~w 0C

�
�
1

2

A 0

A
ÿ 3

B 0

B

�
l ~wC 0 �

�
1� l

2

�
~w 00C�

�
1� 3l

2

�
~w 0C 0 � l ~wC 00 � 0, �31�

where A, B and C are given by

A � l2�lÿ 1�2 ~w2 � 2�lÿ 1�2 ~w 0 2 � �l ~w� ~w 00 �2,

B � l2 ~w2 � ~w 0 2,

C � l2 ~w2 ÿ �lÿ 1� ~w 0 2 � l ~w ~w 00: �32�
It is observed that Eq. (31) is a fourth-order ordinary di�erential equation. There are two anti-symmetry
conditions ahead of the crack tip �y � 0� and two traction-free boundary conditions on the crack face,
i.e.,

~w � ~w 00 � 0 at y � 0 �33�
and

r̂y � t̂y � 0 at y � p, �34�
which can be written in terms of the angular function ~w as
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�
l2 ~w2 ÿ �lÿ 1� ~w 0 2 � l ~w ~w 00

�
y�p�

�
2l2 ~w ~w 0 � �2ÿ l� ~w 0 ~w 00 � l ~w ~w 000

�
y�p� 0: �35�

It should be emphasized that Eqs. (31)±(33) and (35) form an eigenvalue problem, with the power l as
the eigenvalue to be determined. However, unlike the HRR ®eld in classical plasticity (Hutchinson,
1968; Rice and Rosengren, 1968), the eigenvalue l is not known a priori. Without losing generality, we
may use a normalization condition

~w 0 � 1 at y � 0: �36�
It appears that a numerical method could be used to solve this ordinary di�erential equation, with the
power l and ~w 000�y � 0� as the two parameters varying in order to satisfy two crack face traction-free
boundary conditions in Eq. (35). However, the following simple analysis excludes the possibility of any
solutions for the ordinary di�erential equation (31).

It is recalled that Eq. (31) is a fourth-order di�erential equation. In fact, after some algebraic
calculations, we ®nd that Eq. (31) can be rewritten as

d4 ~w

dy4
� g1

ÿ
~w, ~w 0, ~w 00, ~w 000

�
g2
ÿ

~w, ~w 0, ~w 00
� , �37�

where, very importantly, the denominator g2 vanishes when ~w � ~w 00 � 0: It is observed that the left-hand
side of Eq. (37) is zero at y � 0 due to anti-symmetry in mode III. The right-hand side of Eq. (37),
however, would approach in®nity because the denominator would vanish. In fact, near y � 0, ~w can be
expanded in a Taylor series of y using the odd powers only. It can be shown that the left-hand side of
Eq. (37) is of the order of y, and the denominator and numerator of the right-hand side are of the order
of y and a0 � a2y

2, respectively, where a0 and a2 are constants depending on ~w 0�y � 0� and ~w 000�y � 0�:
In order to match the power of y on both sides of Eq. (37) near y � 0, the only solution is to set the
constant a0 to zero. Therefore, ~w 000�y � 0� is not independent of ~w 0�y � 0�, such that there is only one
parameter left, namely the power l, to satisfy the two traction-free boundary conditions in Eq. (35). It is
highly improbable for this problem to have solutions. In fact, we have used the numerical shooting
method (Press et al., 1986) to explore the entire range of l and, indeed, no solutions can be found to
satisfy the two boundary conditions in Eq. (35) on the crack faces. We have also searched for separable
solutions in a much larger range of l, 0 < l < 6, and still no solutions can be obtained.

We would like to point out that this requirement of bounded d4 ~w=dy4 at y � 0 gives an extra
boundary condition, which makes this eigenvalue problem overly constrained, and therefore, has no
solution. This extra boundary condition at y � 0, however, results directly from the assumed separable
form (24) in the asymptotic crack tip ®eld. In fact, it can be shown that, for general displacement ®eld
w�r, y�, the coe�cient of the highest-order derivative with respect to y, @4w=@y4, in the equilibrium
equation is not zero. Only when the displacement ®eld w takes the separable form in Eq. (24), the
coe�cient of @4w=@y4 becomes the denominator g2 in Eq. (37) and vanishes at y � 0: Therefore, the
displacement in the asymptotic crack tip ®eld is non-separable.

3.2. Mode I and mode II crack tip ®elds in MSG plasticity

The asymptotic crack tip ®eld is dominated by plastic deformation such that the deformation near a
crack tip is incompressible. Accordingly, a displacement potential f for plane strain is introduced as

ur � ÿ1
r

@f
@y

, uy � @f
@r

, �38�

where �r, y� are polar coordinates centered at the crack tip and crack faces coincide with y �2p:
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Similar to the HRR ®eld in classical plasticity (Hutchinson, 1968; Rice and Rosengren, 1968), we look
for a separable crack tip ®eld in which the displacement potential can be written as

f � rl�1 ~f�y�, �39�
where the power l and angular function ~f�y� are to be determined. The displacements, strains and strain
gradients can be obtained from the displacement potential (38) and kinematic relations (3) and (4) as

ur � ÿrl ~f
0
, uy � �l� 1�rl ~f, �40�

Err � ÿEyy � ÿlrlÿ1 ~f
0
, Ery � Eyr � 1

2
rlÿ1

h
ÿ ~f

00 �
ÿ
l2 ÿ 1

�
~f
i
, �41�

Zrrr � ÿZryy � ÿZyry � ÿl�lÿ 1�rlÿ2 ~f
0
,

Zrry � l
ÿ
l2 ÿ 1

�
rlÿ2 ~f,

Zryr � Zyrr � ÿZyyy � ÿ�lÿ 1�rlÿ2
h

~f
00 � �l� 1� ~f

i
,

Zyyr � ÿrlÿ2
h

~f
000 � �3l� 1� ~f 0

i
: �42�

In particular, strains and strain gradients can be generally written as

Eab � rlÿ1~Eab�y�, Zabg � rlÿ2 ~Zabg�y�: �43�

The power l is between 0 and 2, 0 < l < 2, in order to ensure that the displacements are bounded in the
singular crack tip ®eld.

The e�ective strain E and e�ective strain gradient Z are obtained from Eq. (17) as

E � rlÿ1~E�y� � rlÿ1
���������������
2

3
~Eab~Eab

r
, Z � rlÿ2 ~Z�y� � rlÿ2

1

2

����������������
~Zabg ~Zabg

q
: �44�

Similar to the mode III crack tip ®eld in Section 3.1, the ¯ow stress s given in Eq. (16) is dominated by
the strain gradient term lZ, i.e., the uniaxial ¯ow stress term f �E� is negligible. Its physical interpretation
is again that the density of geometrically necessary dislocations is much larger than that of statistically
stored dislocations near a crack tip. Accordingly, the ¯ow stress near the crack tip is given by

s � r�l=2�ÿ1 ~s�y� � r�l=2�ÿ1sY

����
l~Z

p
: �45�

Similar to mode III in Section 3.1, the ¯ow stress above near a crack tip in MSG plasticity is
independent of the uniaxial stress±strain curve f �E�, and is therefore independent of the plastic work
hardening exponent N. This once again results from the ¯ow stress (16) in MSG plasticity, and it does
not hold for the HRR ®eld in classical plasticity, nor for the crack tip ®eld in phenomenological strain
gradient plasticity.

The deviatoric stresses can be obtained from Eq. (19) as
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s 0ab � r�l=2�ÿ1 ~s 0ab�y� � r�l=2�ÿ1
2~Eab
3~E

~s: �46�

For deviatoric higher-order stresses given in (20), the term s2
Yf �E� f 0�E�=s is less singular than s=E and

becomes negligible. Therefore, the dominating higher-order stresses are

~t 0abg � r�l=2�ÿ2 ~t 0abg�y� � r�l=2�ÿ2l 2E
~s
~E

h
~Labg�y� ÿ ~Pabg�y�

i
, �47�

where

~Labg�y� � 1

72

�
2~Zabg � ~Zgab � ~Zgba ÿ

1

4

ÿ
dag ~Zddb � dbg ~Zdda

��
, �48�

~Pabg�y� � 1

54

~Edl
~E2

�
~Eag ~Zbdl � ~Ebg ~Zadl ÿ

1

4

ÿ
dag~Ebx � dbg~Eax

�
~Zxdl

�
: �49�

It is observed that both deviatoric stresses and deviatoric higher-order stresses are independent of
uniaxial stress±strain curve f �E�:

The substitution of stresses and higher-order stresses into the equilibrium equation (7) gives

d2 ~t 0yyr
dy2

� 2

�
l
2
ÿ 1

�
d~t 0yrr
dy
ÿ 2

d~t 0yyy
dy
�
�
l
2
ÿ 1

��
l
2
ÿ 2

�
~t 0rrr

ÿ2
�
l
2
ÿ 1

�
~t 0ryy ÿ

�
l
2
ÿ 1

�
~t 0yyr ÿ

�
l
2
ÿ 3

�
~H � 0,

d2 ~t 0yyy
dy2

� 2

�
l
2
ÿ 1

�
d~t 0ryy
dy
� 2

d~t 0yyr
dy
�
�
l
2
ÿ 1

��
l
2
ÿ 2

�
~t 0rry

�2
�
l
2
ÿ 1

�
~t 0yrr ÿ

�
l
2
ÿ 1

�
~t 0yyy ÿ

d ~H

dy
� 0, �50�

where deviatoric stresses have been neglected because they are less singular than deviatoric higher-order
stresses; ~H�y� is the angular function of H, the combined measure of hydrostatic stress and hydrostatic
higher-order stress, which has the asymptotic form

H � r�l=2�ÿ3 ~H�y� �51�
near the crack tip. Eq. (50) provides two governing equations for the angular functions ~f and ~H:

The traction-free boundary conditions (9) and (10) on the crack face can be written in polar
coordinates as

d~t 0yyr
dy
� 2

�
l
2
ÿ 1

�
~t 0yrr ÿ

�
l
2
ÿ 1

�
~t 0yyy � 0, at y � p;

d~t 0yyy
dy
� 2

�
l
2
ÿ 1

�
~t 0ryy � ~t 0yyr ÿ ~H � 0, at y � p;

~t 0yyr � 0, at y � p:

�52�
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The other three boundary conditions are obtained from the symmetry (mode I) or anti-symmetry (mode
II) conditions at the extended crack line y � 0: For mode I,

~f � ~f
00 � ~f

�4� � 0, at y � 0; �53�

while for mode II,

~f
0 � ~f

000 � ~H � 0, at y � 0: �54�

It should be pointed out that Eqs. (50), (52) and (53) for mode I or Eq. (54) for mode II form an
eigenvalue problem, with l as the eigenvalue and � ~f, ~H� as the eigenvector. However, unlike the HRR
®eld in classical plasticity (Hutchinson, 1968; Rice and Rosengren, 1968), the eigenvalue l is not known
a priori.

Without losing generality, we may impose a normalization condition at y � 0: For mode I, this
normalization condition can be stated as������������������������������������������������

~f
0�0�2� ~f

000�0�2� ~H�0�2
q

� 1; �55�

while for mode II, the normalization condition is�������������������������������������������������
~f�0� 2� ~f

00�0�2� ~f
�4��0�2

q
� 1: �56�

The elimination of ~H in the equilibrium equation (50) yields a sixth-order ordinary di�erential equation
for ~f, which can be written as

d6 ~f

dy6
� g1

�
~f, ~f

0
, ~f
00
, ~f
000
, ~f
�4�
, ~f
�5�
�

g2

�
~f, ~f

0
, ~f
00
, ~f
000� : �57�

For a mode II crack tip ®eld, the anti-symmetry condition at y � 0 in Eq. (54) gives a vanishing
denominator g2 � 0: In fact, due to the anti-symmetry, ~f can be expanded as a Taylor series of y using
only the even powers near y � 0: The denominator g2 of Eq. (57) is on the order of y near y � 0, while
the numerator g1 of Eq. (57) approaches a ®nite value a0, where a0 depends on ~f�0�, ~f

00�0� and ~f
�4��0�:

In order to have a ®nite derivative ~f
�6�

at y � 0 from the left-hand side of Eq. (57), the constant a0 must
vanish such that ~f

�4��0� is not independent of ~f�0� and ~f
00�0�: In conjunction with the normalization

condition (56) for mode II, we ®nd that both ~f
�2��0� and ~f

�4��0� are determined by ~f�0�: Therefore, there
are only two parameters left, namely the power l and ~f�0�, to satisfy three traction-free boundary
conditions (52) on the crack face. This is highly improbable to have solutions for two variables
satisfying three equations. In fact, we have used the numerical shooting method (Press et al., 1986) to
explore the entire range of l and ~f�0�, and indeed, no solutions can be found to satisfy three traction-
free boundary conditions (52) on the crack face.

For a mode I crack tip ®eld, ~f becomes an odd function of y due to symmetry. Accordingly, both
~f
�6�

from left-hand side and the numerator g1 of Eq. (57) are zero at y � 0, while the denominator g2 in
(57) does not vanish. This observation, unlike mode II, does not result in an additional constraint
among the boundary conditions at y � 0: The normalization condition (55) only gives ~H�0� in terms of
~f
0�0� and ~f

000�0�: Therefore, there are three variables, namely the power l, ~f
0�0� and ~f

000�0�, to satisfy
three traction-free boundary conditions (52) on the crack face. We have also used the numerical
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shooting method (Press et al., 1986) to search for solutions in the entire range of l, ~f
0�0� and ~f

000�0�,
and have reached the same conclusion that no solutions can be found for mode I.

The analysis in this section shows that the asymptotic crack tip ®elds in MSG plasticity do not have a
separable form of solution, i.e., they cannot be written as rlg�y� in polar coordinates �r, y� as in the
HRR ®eld (1). It is quite puzzling why there is no separable form of solution. This is discussed in detail
in the next section.

4. Discussion

All previous asymptotic ®elds around stationary crack tips have separable form of solutions as in Eq.
(1), such as the classical K ®eld, HRR ®eld (Hutchinson, 1968; Rice and Rosengren, 1968), crack tip
®eld in the couple stress theory of strain gradient plasticity (Huang et al., 1995; Xia and Hutchinson,
1996), as well as the crack tip ®eld in Fleck and Hutchinson's (Fleck and Hutchinson, 1997)
phenomenological theory of strain gradient plasticity (Chen et al., 1999) (even though the last one has
no domain of physical validity). These ®elds are all governed by the path-independent J-integral.

Unlike all asymptotic crack tip ®elds previously established, the asymptotic ®eld in MSG plasticity
does not have a separable form of solution. As we know, the asymptotic crack tip ®elds only hold
within a small distance to the crack tip, typically 1/10±1/5 of the smallest relevant geometry or material
length. In classical plasticity, there are no intrinsic material lengths such that the size of dominance zone
of asymptotic ®eld is governed by the crack length or plastic zone size. In phenomenological strain
gradient plasticity, an intrinsic material length l comes into play, scaling the strain gradients. Xia and
Hutchinson (1996), Huang et al. (1997a, 1999a) and Chen et al. (1999) have shown that the dominance
zone of asymptotic ®eld indeed ranges from l/20 to l/5. In MSG plasticity, however, another material
length, namely the mesoscale cell size lE given in Eq. (23), comes into play and scales the higher-order
stresses. It is recalled that, for the separable form of asymptotic ®elds in Eqs. (24) and (39), higher-order
stresses are more singular than stresses and become the dominating singular terms in equilibrium
equations. Accordingly, lE becomes the smallest relevant length that governs the asymptotic crack tip
®eld, and the dominance zone of the asymptotic ®eld is roughly lE=10: Gao et al. (1999) and Huang et
al. (1999c) have estimated lE to be of the order of 10 times the average spacing among dislocations at
plastic yielding, i.e., b010 in Eq. (23). For copper, Huang et al. (1999b) have established lE to be 500
nm. The size of the dominance zone of asymptotic ®eld in MSG plasticity can be estimated as one-tenth
of lE, which becomes the average dislocation spacing at plastic yielding, and is of the order of 50 nm.
This is not only outside the intended range of applications for strain gradient plasticity (0.1±10 mm), but
also too small for any continuum plasticity theories to be applicable. This is because continuum
plasticity represents a statistical average of the behavior of at least hundreds of dislocations, which are
much larger than the aforementioned average dislocation spacing for the dominance zone of asymptotic
crack tip ®eld in MSG plasticity. It should be pointed out that even though the local density of
dislocations around the crack tip might be larger than the average density in bulk materials such that
this 50 nm may contain more dislocations than the above estimate of average dislocation spacing, 50 nm
is still too small for the dominance zone of asymptotic ®eld to contain enough dislocations for
continuum plasticity to be applicable. For example, for a very high local density of 1016 mÿ2, 50 nm
contains only ®ve dislocations. Therefore, even if the present analysis had given a mathematically
separable solution as in Eq. (1), the solution would not have a domain of physical validity.

The fracture criterion (2) in classical plasticity is established from the existence of separable crack tip
®eld such that the crack tip deformation is represented by a single amplitude factor J as in Eq. (1). For
MSG plasticity, however, such a separable crack tip ®eld does not exist. What is the fracture criterion in
MSG plasticity? Recent e�orts in simulation of crack initiation and growth make use of an embedded
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cohesive zone characterized by a work of separation and a separation strength (e.g., Needleman, 1987;
Tvergaard and Hutchinson, 1992, 1993; Xu and Needleman, 1994; Camacho and Ortiz, 1996).
Therefore, the cohesive law has replaced Eq. (2) to become the fracture criterion that is implicitly built
into the continuum analysis. Gao and Klein (1998) and Klein and Gao (1998) have developed an
alternative approach, namely the virtual-internal-bond (VIB) model, to build a fracture criterion into the
continuum analysis. The VIB model with randomized internal cohesive interaction between materials
particles has been proposed as an integration of continuum models with cohesive laws or atomistic
models with interatomic bonding. It is di�erent from the cohesive zone model in that continuum
analysis and cohesive laws are integrated at the level of fracture process zone or ®nite element
discretization. If the cohesive zone or VIB model is introduced in MSG plasticity, it is not necessary to
establish an explicit fracture criterion as in Eq. (2).

In summary, the asymptotic crack tip ®eld does not have a separable form of solution in MSG
plasticity. Non-separable solutions for the crack tip ®eld, in general, can be obtained numerically (e.g.,
by the ®nite element method).
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